Financial Data Analysis with Two Symmetric Distributions
نویسنده
چکیده
The normal inverted gamma mixture or generalized Student t and the symmetric double Weibull, as well as their logarithmic counterparts, are proposed for modeling some loss distributions in non-life insurance and daily index return distributions in financial markets. For three specific data sets, the overall goodness-offit from these models, as measured simultaneously by the negative log-likelihood, chi-square and minimum distance statistics, is found to be superior to that of various “good” competitive models including the log-normal, the Burr, and the symmetric a-stable distribution. Furthermore, the study justifies on a statistical basis different important models of financial returns like the model of Black-Scholes (1973), the log-Laplace model of Hürlimann (1995), the normal mixture by Praetz (1972), the symmetric a-stable model by Mandelbrot (1963) and Fama (1965), and the recent double Weibull as limiting geometric-multiplication stable scheme in Mittnik and Rachev (1993). As an application, the prediction of one-year index returns from daily index returns is discussed.
منابع مشابه
Estimation of Value at Risk (VaR) Based On Lévy-GARCH Models: Evidence from Tehran Stock Exchange
This paper aims to estimate the Value-at-Risk (VaR) using GARCH type models with improved return distribution. Value at Risk (VaR) is an essential benchmark for measuring the risk of financial markets quantitatively. The parametric method, historical simulation, and Monte Carlo simulation have been proposed in several financial mathematics and engineering studies to calculate VaR, that each of ...
متن کاملThe Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models
In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...
متن کاملSkew-slash distribution and its application in topics regression
In many issues of statistical modeling, the common assumption is that observations are normally distributed. In many real data applications, however, the true distribution is deviated from the normal. Thus, the main concern of most recent studies on analyzing data is to construct and the use of alternative distributions. In this regard, new classes of distributions such as slash and skew-sla...
متن کاملThe Tail Mean-Variance Model and Extended Efficient Frontier
In portfolio theory, it is well-known that the distributions of stock returns often have non-Gaussian characteristics. Therefore, we need non-symmetric distributions for modeling and accurate analysis of actuarial data. For this purpose and optimal portfolio selection, we use the Tail Mean-Variance (TMV) model, which focuses on the rare risks but high losses and usually happens in the tail of r...
متن کاملtwo- sided power distribution
In this paper, a new family of distributions with many applications in financial engineering have been introduced. This distribution contains important statistical distributions such as the triangular, exponential and uniform distribution. Initially considered a special case of this distribution And then survey The important features of it. How to calculate maximum likelihood estimates are pres...
متن کامل